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The stability of a helical vortex filament of finite core and infinite extent to small 
sinusoidal displacements of its centre-line is considered. The influence of the 
entire perturbed filament on the self-induced motion of each element is taken 
into account. The effect of the details of the vorticity distribution within the 
finite vortex core on the self-induced motion due to the bending of its axis is 
caIculated using the results obtained previously by Widnall, Bliss & Zalay (1970). 
In  this previous work, an application of the method of matched asymptotic 
expansions resulted in a general solution for the self-induced motion resulting 
from the bending of a slender vortex flament with an arbitrary distribution of 
vorticity and axial velocity within the core. 

The results of the stability calculations presented in this paper show that the 
helical vortex filament has three modes of instability: a very short-wave insta- 
bility which probably exists on all curved filaments, a long-wave mode which is 
also found to be unstable by the local-induction model and a mutual-inductance 
mode which appears as the pitch of the helix decreases and the neighbouring 
turns of the filament begin to interact strongly. Increasing the vortex core size is 
found to reduce the amplification rate of the long-wave instability, to increase 
the amplification rate of the mutual-inductance instability and to decrease the 
wavenumber of the short-wave instability. 

1. Introduction 
Recent advances in the understanding of the dynamics of curved vortex 

filaments makes it possible to re-examine the stability of basic vortex filament 
configurations such as the ring and the helix. In  connexion with the study of the 
stability of the trailing vortex pair as a model for the aircraft wake, Widnall et al. 
(1970) presented a general solution for the self-induced motion of a curved vortex 
filament with an arbitrary (but stable) distribution of vorticity and axial 
velocity within the vortex core. (Hereafter this paper will be referred to as I.) 
This solution was then applied in the study of both the stability of the vortex 
pair and the self-induced motion of a vortex ring with an arbitrary vorticity 
distribution. The results obtained in the latter study agreed with the results 
obtained by Saffman (1970) from considerations of the energy and impulse of the 
ring. This solution for the self-induced motion of curved vortex filaments applies 
whenever the vortex core size is smaller than both the local radius of curvature 
and the wavelength of any perturbation along the filament. 
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The helical vortex filament is of intrinsic interest since it is one of the forms for 
which the self-induced motion of the filament will not distort the configuration; 
the helical vortex filament under its own influence will rigidly translate and 
rotate. In addition, helical vortex filaments are both found in, and used as, 
models for the wakes of helicopters and propellers. Convergence difficulties in 
the calculation of these wakes at small pitch angles indicate possible instability. 

The small-perturbation analysis is, of course, only a first step in a more complete 
study which would include the induced motion due to large amplitude distortion 
of the helical filament. Owing to the complexity of this problem, direct attack 
using the digital computer to calculate the influence and motion of each point on 
the filament would be necessary. However, the proper numerical treatment of 
the finite vortex core and the examination of numerical as well as physical 
instability can now be based on the existence of an analytic solution. 

A study of the stability of a helical vortex filament to small sinusoidal dis- 
placements of the centre-line of the vortex core was presented in 1928 by Levy & 
Porsdyke. In  their treatment, a finite core was not explicitly considered and the 
singularity in the Biot-Savart law for the induced velocity on the filament itself 
was avoided by evaluating the integral at  a point near the filament. The integra- 
tions were done using a planimeter. Unfortunately, the proper treatment of the 
finite vortex core is more subtle than the technique that they applied and con- 
sequently their results are in error, as will be seen later. 

Betchov (1965) considered the stability of a helical vortex filament by applying 
the local-induction model, in which the self-induced velocity at a point on the 
filament is taken to be inversely proportional to the local radius of curvature in 
the direction of the local binormal to the curve and to be independent of effects 
from more distant elements of the vortex filament. The result of this analysis is 
that the helical filament is unstable for perturbation wavelengths longer than 27r 
times the local radius of curvature of the unperturbed filament and stable for 
shorter waves. 

As will be seen, this mode of instability is also present when the full problem 
is considered but its amplification rate differs significantly from that predicted 
by the local-induction model. Beyond this, there are two additional modes 
of instability which are found when the effects of the entire filament are 
considered. 

The theoretical investigation of the related problem of the stability of the 
vortex ring has been done and will appear when the companion experimental 
study has been completed (Widnall, S. E. & Sullivan, J. P. 1972 ‘On the stability 
of vortex rings ’, private communication). In  this paper, this work is referred to 
as 11. Some of the results of this study will be briefly discussed. 

2. Formulation 
The investigation of the stability of a helical vortex filament to small sinusoidal 

displacements of its centre-line proceeds by evaluating the self-induced velocities 
at the filament due to these perturbations. These induced velocities then kine- 
matically determine the resulting motion of the filament and thus the growth rate 
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FIGURE 1. Sketch of the perturbed helical vortex Bament showing the 
co-ordinate systems yi, xi and zi. 

(if any) of the perturbations. This analysis follows closely the similar analysis of 
the stability of the vortex ring (11), although the geometry for the helix is much 
more complex. 

For a vortex filament of small core size the induced velocity at a point y‘ on 
the filament may be evaluated by a proper interpretation of the Biot-Savart law, 

in terms of the vorticity distribution within the vortex core. This is done using 
results obtained in I ,  in which the local solution for a curved vortex filament of 
small core size was matched to the filament velocity from the Biot-Savart law (1)  
to give the self-induced motion of the filament. 

The perturbed helical vortex filament is sketched in figure 1. The perturbations 
are taken as sinusoidal displacements normal to the aament in both the radial 
and tangential (i.e. along the cylinder) directions. (In the linearized stability 
analysis displacements along the filament are not considered.) 

The stability problem is formulated in a co-ordinate system in which the 
unperturbed helix is stationary, i.e. a co-ordinate system which rotates with the 
angular velocity Qo of the unperturbed helix and translates with the axia1 
velocity V, of the helix. 

41-2 
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2.1. Geometry of the perturbed $lament 

Because of the potential geometric complications of the description of sinusoidal 
perturbations of a helical filament, we find it convenient and compact to work in 
curvilinear co-ordinates. We consider three co-ordinate systems: the fist is the 
ordinary Cartesian system gi, i = 1 , 2 , 3 ;  the second is a curvilinear set xi chosen 
so that the unperturbed helix is a co-ordinate curve x1 = 0, x3 = R (the radius 
of the cylinder); the third is a curvilinear set xi chosen so that the perturbed helix 
is a co-ordinate curve x1 = 0, x3 = R (see figure 1).  

The curvilinear co-ordinates xi = xi(yi) are defined by 

( 2 )  
1 
I 

X l  = Y3 - ( 1 / 4  tan-l (Y2/Yl) 9 

x2 = 93 + R2k tan-l (yz/y,), 

23  = ( Y ” l Y 3 4 .  
This can be inverted to give yi = yi(xi). The unperturbed helix is given by the 
curve x1 = 0, x = R. Although ( 2 )  defines a set of non-orthogonal co-ordinates, 
at x3 = R they are locally orthogonal. The pitch of the helix (tana) is 1/Rk. 

The perturbations to the position of the filament are taken to be normal to the 
filament in the x1 and x3 directions. The perturbed filament is described by 

x1 = goe iy z z ,  x3 = R+poeiyzz, x2 = x2,  (3) 

where go and po are the amplitudes of the perturbations and y is the wavenumber 
along x2. ( y  is not restricted to integer multiples of the wavenumber of the helix.) 

The zi co-ordinates are defined by 

x1 = xl-gOeiyzZ, z2 = xp ,  x3 = x2-poeiYza, (4) 

so that on the perturbed vortex filament z1 = 0 and x3 = R. The relation yi = yi(xj) 
can be found by eliminating xi from (2) and (4) and solving for yi = yi(zf). For 
small values of to and po the Cartesian co-ordinates for a point on the perturbed 
filament are 

(5)  I 
i zc2 1 ‘ i R2k2C2 I i 0 i 

y1 = (R  +poeiYza) cos k‘(z, - go eiYzz) ,  

y2 = ( R  +Po eiYBz) sin k’(z, -po eiyoe), 

y3 = (z2 + R2k2t0 eiyz2) c2, 
where 
dropped from now on. 

column-vector notation as 

= I/( 1 + k2R2)3 and k‘ = kc2 = k / (  1 + k2R2). The subscript on z2 will be 

Equation (5) can be expanded in a Taylor series in lo and po and written in 

R cos k’z Rk’ sin k‘z cos k‘z 

y = R sink’z + f o e a y z  - Rk’cosk’z +poeiYZ sin k’z , (6) 

where the elements of the column vectors are the Cartesian components corre- 
sponding to i = 1, 2 and 3 respectively. The distance between any two points on 
the filament, say x and x ’ ,  is just 

Y - Y ‘  = Y(z)-Y(z’).  
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FIGURE 2 .  Cross-section of the perturbed helix showing the local unit 
vectors i, and i, and y'. 

The differential element d y  of the filament is given by 

dy  = (dy/dz)dz = udz, 

with u defined as dyldx. u in Cartesian components is obtained by differentiating 
(6). The result in the column-vector notation of (6) is 

- k'R sin k'z Rk'(k' cos k'z 

+ i y cos k'x 

Since the unit tangent vector along the filament is 

the relation between dz and the element of arc ds is 

ds = I u I  dz, 

where, from (7), I u 1 = c( 1 + po Ic'2Bei~Z/c2). 

To calculate the resulting motion of a point y' on the vortex filament it is 
convenient to work in the local polar unit vectors i,, i, and k at this point as 
sketched in figure 2 (k along y3). The vectors y', y (the vector to any other point) 
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and dy can be expressed in components of these local unit vectors as follows: 

- k' sin El 

k' cos e 
+iycose 

+ iy sin El 
0 

where 8 = k'(z -z') ,  the angle between y and y' (figure 2). The elements of the 
column vectors refer to the i,, i, and k components respectively. The integrand 
of (1) is formed by vector operations on these expressions for y', y and u. Before 
forming this integrand, we shall consider the kinematics of the filament motion. 

2.2. Kinematics of the filament motion 

Since the co-ordinate system rotates with angular velocity Qo, the total velocity 
of the vortex element at the point y' is 

jTLOt = fiel + .Ro k x y' + VA k, (10) 

where is the velocity relative to the co-ordinate system in which the un- 
perturbed helix is stationary. Taking the time derivative of y' from (9a), we 
obtain the expression for this relative velocity: 

Since the vortex element moves with the self-induced velocity, the total velocity 
jTlirCot of the vortex element must equal g (see equation (l)), the total velocity 
induced at the point y' owing to the entire perturbed vortex filament. 

The differential equation for the motion of a point on the vortex filament, and 
thus for the growth of the perturbation amplitudes, is then 

jTLel = q-Q,kxy'-FAk. (12) 

Since for small po and to the right-hand side of (12) is homogenous and linear in 
to and po, we define Vso and Vpo such that 

to eirz'Vc0 + po eiyz'V = q-il0kxy'-VAk, (13) 

where V and V , the induced velocities per unit to and po displacement, are 
60 PO 

complex vectors which depend only on y and kR. 
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The governing equations for to and po are then first-order linear ordinary 
differential equations with constant (in time) coefficients. If we assume a solution 
of the formp,(t) N cut, Eo(t) w eat, the governing equation (12) (with (13)) becomes 

(14) 

where yi is the vector to the point on the unperturbed filament. The eigenvalue a 
is found by solving (14) after the coefficients Vt0 and Vp0 have been determined 
from (13) for a given helical filament (given k, R) and perturbation wavenumber y. 
If a has a positive real part the helix is unstable; if a is purely imaginary, oscilla- 
tions and waves result. 

a(y' - y;) = go e i y W  5 +po eiygVpo, 

2.3. Evaluation of the induced velocity $eld 

The vector operations necessary to evaluate q are indicated in (1). The vector 
y - y', in local unit polar vectors at y', from (9a)  and ( 9 b )  is 

R(cos3- 1) Rk'eiYZ sin S eiys cos B - i 

where X = x - z' and 8 = k'X. For small Eo and po, we may write the scalar in (1) as 

where Y = (2R2(1 - cos 8) + C4X2)S, the magnitude of the distance between two 
points on the unperturbed filament. The symbols X and 2 have been introduced 
for the terms proportional to to and po. 

The vector cross-product (y - y') x u is obtained directly as the cross-product 
of (15) and (9c) .  Retaining terms only to first order in to and po, we have the 
rather lengthy expression (in components corresponding to i,, i, and k at y') 

(y-y') x u = R ~ 2 ( 1 - ~ ~ s k ' X ) - k ' R ~ 2 X s i n k ' ~  i RC2sin k'X - k'RC2z cos k'Z 

k'R2( 1 - cos k'X) 

1 
C2Rk'( 1 - eiy3 cos k'X) + {2k2R3k' cos k'z( 1 - eiye) 

+ (iyC2k2R3sinkfZ- Rk'2~2~sink'X+iyRk'C22 cosk'2)eiY 

eiyg( - iyC2k2R3(cosk'2 - 1) + Rkf2C22cosk'Z 

i 
- Rk'C2eiYg sin k'X - 52k2R3kf sin k'Z (eiY3 - 1) 

+ i ~Rk'( ;~z sin EX) 
- i yR2k'( 1 - cog k'X) eiyg - R2k'2 sin k'g 

(17) 
i C2eiyz(sin k'Z - k'z cos k'X - iyX sin k'X) 

ei@k'R(l -cosk'X) +k'R(eiyg-cosk'X) -iyRsink'2eiyg 
<2( 1 - eiys COB k'X) - k'C22 sin kB eiyz + iyC2X cos k'? eiyz 

1 + go edyz' 

+po 

= x + to eiyz' E + po eiYO' P, 
1 
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where the notations x ,  E and P have been introduced for the various column 
vectors. 

Theintegrandof (l)(avector)istheproductof (16)(ascalar)and(I7) (avector). 
This product cantains: (i) a zeroth-order term go, the self-induced velocity of the 
unperturbed helix; (ii) first-order terms proportional to to and po which give q,, 
the induced velocity due to the perturbations and (iii) second-order terms pro- 
portional to products and squares of E,, and po. These latter terms are not con- 
sidered in the linear stability analysis. 

The zeroth-order term in ( 1 )  becomes 

RC2 sin k’Z - Rk’ZC2 cos k’z 
Rc2( 1 - cos k’z) - krRC2z sin k’z 
R2k’( I - cos k‘z) 

Since the i, component of (18) is odd, is zero. V, and V, are the rotational and 
axial velocities of the unperturbed helix. From (18) the rotation rate no is 
given by 

(19) 
(c2( I - cos k’z) - k’c2.2 sin k’z) dz 

Y3 
- _ - _  

The first-order terms for the induced velocity due to lo and po displacements are, 
apparently, 

A subsequent investigation of the proper interpretation of these singular 
integrals will reveal that (1 8) contains an additional first-order contribution 
owing to changes in arc length along the filament due to the po perturbation. 
This contribution must be added to (20) to obtain the complete induced velocity 
resulting from the perturbations. Before considering the evaluation of the 
induced velocities of (18) and (20) and the investigation of the stability of the 
helix to small perturbations, we shall consider an important limiting case for 
which the complete stability problem can be worked out analytically. 

3. The stability of a helical filament from the local-induction model 
In  the limit of very small vortex core size, at each point the self-induced 

velocity due to curvature will be dominated by the nearest points on the filament. 
In  this limit the induced velocity becomes inversely proportional to the local 
radius of curvature, directed along the binormal of the filament curve. The 
magnitude depends upon the vortex core size as loga, where a is the ratio of 
the core radius to R, the radius of the cylinder. The limiting expression for q, 
say q,, is then 

U 
loga- x K, 

IUI 

r 
%(Y’) -& 

where K is the curvature vector 
K = a2yylas2 
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and u and y are given by (9). Since y is a function of z ,  the curvature vector is 
obtained through the following operations: 

Straightforward calculation using (9 c )  results in 

(24  a)  

and 

. ( 2 4 b )  I - k2RC2 2iyRk2C2 - y 2 / p  - k2g2 + k 4 5 4 2 ~ 2  

+ to eiYzZ k3C4R + Rky2 +po eiyz 2iyk  - iyk3c3R2 1 I-y2k2R2 1 I - iyg2k2R2 

The velocity q is the cross-product of (24 a)  and (24  b )  : 

1 
0 y2kR/5+ k3C5R 

U q2 = - x K = - k2R53 - to eiyz iyc3R3k4 - 2iyRk2C3 

3iyC3k3R2 I4 I+k3R2c1 { 
- (25 )  

2i yk5 

k 

6(y2/c2 + k2c2 - 3k4R2C4) 

- y2 - R - 2k3RC3 + 3k5R3c5 
5 

- po eiyz 

(For convenience, the factor - r/4n log a will be taken as unity in this section.) 
In  this limiting case the angular and axial velocities of the unperturbed 
filament are 

The expression SZ0k x y' which appears in the equation for the self-induced 
motion of the filament ( 1 2 )  is given by 

Q, k x y' = 1 - { - R r / + p o e i Y z ' l - ! [ 3 j .  ( 2 7 )  k2Rg2 + to eiyz' 

The equation of motion for the vortex filament is obtained from (12 )  using y' from 
(9), q,from (25 ) ,  Qo k x y' from ( 2 7 )  and V, from (26 ) .  This results in a set of linear 
ordinary differential equations for the amplitudes of the perturbations, to and po: 

Qo = -k2g3, VA = k3R2C3. (26 )  

* ( 2 8 )  

Y 2 W 5  
to - RkC2 + P o  0 = -to iyc3R3k4- 2iyRk2C3 i,2:2,2 111 13iyc3k3R2 2iyk5 

- po y2/< - 3k4R2C5 1 y2kR/< + 2k3Rg3 - 3k5R3(55 
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Two differential equations, each containing only to or Po, can be obtained 
from (28) by taking the scalar product of this vector equation with the orthogonal 
vectors (0, - l/Rk, l} and (1, 0, O}.  These vectors are both normal to the un- 
perturbed filament. (The third orthogonal vector, (0, Rk, 1), is along the 
unperturbed filament.) The governing equations for to and po then become 

(29)  } 
( 0  + 2iYk!Zo - “/5)2 - c4:4k4w/5Rk1 Po = 0, 

P o  + 2iYKPo + ( Y 2 W 5 )  Eo = 0. 

The eigenvalue a, the amplification rate of the perturbations introduced in (la), 
is then determined by the equation 

On setting the determinant equal to zero we obtain the expression for a: 

a = ( y / l )  [ 5 4 k 4 3 2  - (y/<)”+ - 2iyk5. (31) 

This result states that wavenumbers y / [  smaller than the curvature g2k2R of 
the unperturbed filament will be unstable; larger wavenumbers will be stable. 
(y/< is the wavenumber based on arc length along the unperturbed filament.) 
The second term in (31) corresponds to waves travelling along the filament at 
a (non-dimensional) speed of twice the torsion of the helix. This result agrees 
with that obtained by Betchov (1965) using the local-induction model. For our 
purposes, the development in this section is a useful framework for the study of 
the stability problem when the influence of the entire filament is considered. The 
more complex expressions for the induced velocity (20)  must have (25)  as a 
limiting value for very small vortex core size. This is a very useful check in such 
a complex problem. 

4. Evaluation and interpretation of the integrals for self-induced 
velocity 

The integrals in the expressions for self-induced velocity of the perturbed 
vortex filament, (18) and (20) ,  are singular. A proper definition and evaluation 
is made by considering the finite vortex core of the filament. In  addition, for 
a general value of these integrals are not conveniently expressed in closed form 
and must be evaluated numerically. The most straightforward approach seems 
to be to separate these two difficulties, i.e. the singular behaviour and the 
numerical evaluation. 

Each of the integrals in (18) and (20)  is of the form 

It is convenient to identify 4 ( p )  as the Fourier transform of the function fi(@ so 
that the numerical evaluation can be done quite efficiently using a standard fast- 
Fourier-transform subroutine. There are five functions that appear in the 
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expressions (18) and (20) for q,, and q,. These are denoted as follows: 

(33 )  } 
fl = [2R2( 1 - cosk'z) + c4X2]-S, f2 = flZ, 

f3 = [2R2( 1 - cos k'z) + 14Z2]4 ,  fe = fix, f, = f3X2. 
The functionsf,, f3 andf, are even in 2; f2 andf, are odd. 

A typical term in the velocity q can be represented as a sum of the transforms 
&(/3) (i = 1-5) with the wavenumber /3 taking the values y - k', y + k', y - 2k', 
y + 2k', y ,  k', 2k' and zero. For example, the i, component of qo, the tangential 
velocity of the unperturbed helix, becomes (from 18) 

v, = Rl2[Fl(O) -F1(?/)] + ik'R52F2(k'). (34 )  

However, the functions fi(Z) are singular near X = 0, so a numerical transform 
cannot be simply taken without a proper interpretation. 

Near Z = 0, the functions fi(X) can be expanded as 

where 

C = 5R2k'4/(g7 x a!) and D = 35(2R2/g2)ak's / [ (4!)2  815] - 5R2k'6/(g7 x 6 ! ) .  

The evaluation and interpretation of the integrals in (32 )  is achieved by 
rewriting the integrand and adding and subtracting functions that have the same 
singularities as Pi@) and also can be easily treated analytically. For example, 
consider the function fl(Z) and its transform F,(p). Sincef,(Z) is even, the right- 
hand side of (32 )  can be written as a cosine transform : 

In  this form we have introduced the ' cut-off ' notation that will allow a proper 
definition of this integral in terms of the properties of the vortex core. That is, the 
integration is merely stopped at some small distance X = S from the origin X = 0. 
The general solution (see I) for a perturbed vortex filament can be interpreted as 
specifying the correct choice of 6 in terms of the local properties of the core. 

To avoid the singularity in the numerical evaluation of Fl(/3) we rewrite 
( 3 6 a )  as 

~ ~ ( p )  = 2x1irnSm ( f l ( z ) - w - ~ ) c o s / 3 ~ c i ~  1 Be-zc 
8+0 0 

A comparison of (33 ) ,  ( 3 5 )  and ( 3 6 a )  shows that since we have added and sub- 
tracted a function which has the same singularities as$,(z) at X = 0, 6 can be set 
to zero in the first group and the resulting non-singular integral, G,(P) say, 
evaluated numerically. (The factor e-zC is introduced into the B/Z integral to 
improve convergence.) 
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The last integral in (36b)  can be evaluated analytically in terms of the cosine 
integral 

which for small behaves like y +log 6. In  the limit 6+ 0, Fl(P) becomes 

Similar expressions can be constructed for the remaining <(P)’s, i = 2-5. 
This will be done shortly. However, first we shall consider both the singularities 
of Fl as 6-t 0 and the proper choice of 6 in terms of the properties of the finite 
vortex core. 

The induced velocity q is formed from various combinations of the Pg’s. For 
a smooth vortex filament, the induced velocity is singular only as log6, while 
the individual Fi’s behave like 1/a2 or at most l/64. However, if we examine the 
particular combinations of < that appear in each term of the induced velocity 
we find that there is considerable cancellation. In  fact, it can be shown (and must 
be so) that all the terms in (38) which do not contain p explicitly will cancel in 
forming the expression for q from (18) and (20).  Therefore (38) can also be 
written as 

(39) 

Similar expressions will be derived for the remaining <’s. All that remains to 
complete the evaluation of Pl is to choose the value of 6. For this we refer to the 
previous results obtained in I. (See also Bliss 1970.) 

In  the calculation of self-induced motion of a point s on an arbitrary vortex 
filament, the cut-off of the Biot-Savart integral (1)  & small distance I on either 
side of the point s will result in an expansion (in I) of the form 

77 
[-logZn+B(s)], q(s) - Z&o 

where R is the local radius of curvature, n is the unit normal to both the local 
tangent and curvature vector, and B(s) is an O( 1) vector representing the effects 
of distant portions of the filament. In  I, the solution was completed by adding 
a section of length 21 of a vortex ring of the same radius of curvature R(s) at this 
point on the general filament to  obtain an outer solution. This was then matched 
to a local inner solution for a curved vortex filament; the resulting self-induced 
motion of the vortex filament at  the point s was found to be 

[( - log + A - Q) n + B(s)], (41) 
r 

q(s) anR(s) 
where A is an O( 1) constant. A is determined by the details of the swirl velocity v,; 

For example, if the vorticity distribution is uniform within the core and zero 
outside, A = a. 
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Comparison of the induced velocities from (40) and (41 )  shows that the correct 
induced velocity is obtained if the cut-off distance 1 is chosen such that 

logZ= log+a++-A. (43) 

For the perturbed helical filament, the relation between the arc length 1 along 
the filament and the cut-off S in the limit &-to is (from (8)) 

(44) 1 = <( 1 + poId2R eiyz'/c2) 6. 
From (43 )  and (44 ) ,  the cut-off S is chosen such that 

(45  a) } 
log S = -log c(1 +polc'2Reiyz'/c2) +loga- A + 8 
log 6 N log (a/c) - A  + + -pok12R eiyz'/c2. or 

This result states that the proper choice of 6 is affected by the perturbation po 
through changes in the arc length of the perturbed filament. (This effect also 
occurs in the related problem of the stability of the vortex ring.) This small 
change in the cut-off 6 need be considered only in evaluating go from ( 1 8 ) )  where 
it contributes a term of O(po) that must be added to the first-order velocity q, to 
obtain the complete induced velocity due to the perturbation po. Since q, is 
already O(po), 6 may be chosen without taking this effect into account, i.e. with 
6 = So, where log So = log (a/c) - A  + +. 
We shall therefore write Fl using 6 = 6, and apply the necessary correction to 
go when it is evaluated. 

F! is now completely defined in terms of the properties of the vortex core which 
enter in the combination log a - A .  Similar expressions for the remaining func- 
tions I$ for i = 2-5 follow in the same manner. Again, in the limit S-t 0, all terms 
more singular than log 6 must cancel when q is formed, so these terms and all 
terms which do not contain ,!3 may be eliminated from the R.'s at the outset. 
Hence 

(45  b )  

+CP2{10g (Pd /c ) -~~-Dlog(~2+P2) ,  (46) I m P )  = G2V) - c2/3i/e3, (1% (P!%) - 11, 
P3(P) = G3(P) - (P4/12C5) (1% (P46)  -3- t - 8 

P4(P) = G4(P) + (iP3/3C5) (1% (PdK) - fi - 8 - 2~PC{log ( P a l  - 11, 
P5(P) = G5(P) + (P2/C5) {log (P(%3 - 11 +Clog (c2 +P", 

where logd = loga- A +  4 and C and D are defined by (35b) .  The functions Gi 
are given by the expressions 

I 
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As can be seen by comparing (33), (35) and (47), the integrands of the Gi’s are 
formed by subtracting from the fi’s simple functions that have the same singu- 
larities. The resulting non-singular integrals can easily be evaluated numerically 
to give the Gi’s. The remaining singular integrals in I$ are then treated analytic- 
ally as cut-off integrals and evaluated with 6 chosen according to (45 b)  to give 
the complete expression (46). 

5. Calculation of induced velocities and evaluation of stability 
characteristics 

Now that the singular integrals (32) have been defined in terms of the pro- 
perties of the finite vortex core, the induced velocities due to the perturbations 
can be calculated. The zeroth-order integral for q,, equation (18), is considered 
first. Because the choice of the cut-off 6 is affected by the perturbation po, 
qo contains both the self-induced motion of the unperturbed helical filament and 
a first-order term proportional to po. The expression for go in terms of the Fi’s, 
from (18), is 

go = [RC2(F1(O) - Fl(k’)) + ik’R62F2(k’)] i, + k’R2(Fl(0) - Fl(k’)) k 
k’4R2 eiyz’ . kt5R3 

10, + po - eiYz’ k. (48) -Po c3 c5 
The small correction terms must be added to q,, since the definition of I$ contains 
only the lowest order expression for 6, equation (45b),  whereas in evaluating (18) 
the full expression (45a) must be used. The fist-order correction is 

This term is added to q1 as given by (20) to obtain the complete induced velocity 
at a point on the filament resulting from the perturbation po. 

Owing to the complexity of the expression (20) for ql, it does not seem worth- 
while to rewrite 4, as a function of the Fi’s. Although the resulting expression is 
very long, the various terms can be obtained by inspection using the definitions 
of Fi from (32). For example, a typical term in q, can be written as 

In  the stability calculations the induced velocities were directly programmed 
using theexpression (46) for the Fi’s and numerical values for theGi’s as calculated 
from (47) by means of a standard fast-Fourier-transform subroutine. The wave- 
number p takes the values y + k‘, y + 2k’, y, k’, 2k’ and zero in the expression for 
the induced velocity. One useful check on the numerical calculation of the 
induced velocity is that those terms proportional to - log a (each Fi contains 
log a)  must be equal to the induced velocity given by the local-induction model 
(25). That these terms formed from the Pi’s did agree numerically with the 
limiting values gives some confidence in the details of the computation. 
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The total induced velocity due to the perturbations may then be written as 

655 

q, = (rl47.d CSl( -loga+A) + q,+ s3, ( 5 0 )  

where g, is the limiting self-induced velocity from the local induction model (25), 
qg is due to distant portions of the filament (obtained numerically) and q& from 
(49), is the correction due to the perturbation of the cut-off 6. 

There are two possible models for the behaviour of the core during the perturba- 
tion. For one it is assumed that variations in the core size along the filament will 
be resisted by very small-scale processes within the core,? i.e. flow along the 
filament due to changes in the interior pressure produced by changes in core size, 
so that, for y + 0, a is taken as a,. (The y = 0 mode is a special case. This mode is 
neutrally stable and just represents the response of a helix to a change in radius; 
it  translates at a new velocity.) In  the other model it is assumed that each 
element of the vortex filament will conserve volume so that a2(s) Z(s) remains 
constant during the perturbation. 

In  the related study of the stability of the vortex ring (11) both of these models 
for vortex core behaviour were considered. The results showed that amplication 
rates obtained by assuming that the core radius was constant were only about 
8 % higher than those obtained assuming that the local volume was constant. 
In  this study we shall assume that a remains constant along the filament during 
the perturbation. 

We have completed our description of the evaluation of the total self-induced 
velocity at a point on the perturbed helical vortex filament as given by (I); the 
expression for q is 

q = V,k+RQ,i,+q,, 

with q, taken from (50), Q, from (19) and V, from (18). This expression contains 
not only the effect of the local radius of curvature but also the effects of the 
entire (perturbed) filament as well as the effects of vortex core size and vorticity 
distribution within the core. As to its limits of applicability, the core size a should 
be small in comparison with both the local radius of curvature of the unperturbed 
filament 9 (9 = (Rk2g2)-l from (24)) and the wavelength of the perturbation. 

The stability analysis proceeds as did the analysis of $2, equations (27)-(31), 
which used the local induction model to evaluate q rather than the full expres- 
sion (51). The governing equation for the perturbation amplitudes to and po is 
again given by (12). The expression Q,k x y, which appears in (12), is again 
given by (27) but now Q, is determined by (19) rather than by (26). The scalar 
products of the resulting kinematic equations, analogous to (28), with orthogonal 
vectors (see 0 2) are then taken to produce a set of linear ordinary differential 
equations for go and p,. 

We define a non-dimensional amplification rate E as 

E = 4(17/4~~2), 

where CL. is as in (14). The resulting eigenvalue problem for E (corresponding 
to (30)) is of the form 

-f This model was suggested to the author by Dr Phillip Saffman. 
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FIGURE 3. The O(1) contributions V,, and R, to the axial and rotational 
velocities of the helix as defined by (53) and (54). 

All the Q's turn out to be real. Since the induced velocity qr and the velocity q, 
from the local-induction model (25) are related through (50), each element Q of 
the matrix in (52) is the sum of the corresponding element from (30) multiplied 
by - log a + A  plus an O( I) term due to the more distant portions of the filament, 
e.g. a typical term Qpc, is 

Qpc = ( - log a + A )  y2kR/5+ Qpt. 

(53) 
- From (52), 
a = - i ( Q p p  + Q ~ E )  f i ( 4 Q p ~ Q g p -  (Qg - QpP)?.  

Although it is not obvious from the full expressions for Qpp and Q5[, these turn out 
to be numerically equal. Before discussing the numerical results for Z, we shall 
consider another useful limiting case provided by y = k'. 

The displacement po eiw2 corresponds to a sideways displacement of the helix 
without distortion. Since the undeformed helix rotates with an angular velocity 
Q0, to an observer fixed at a point on the filament this perturbation will appear 
to rotate at - Qo. Therefore for y = k', Z should equal iQo. The fact that the 
numerical calculations did indeed give this result for all values of k R  and the 
vortex core radius a served as a rather thorough and final numerical check. It is 
interesting that this ease, y = k' (or then = 1 mode), was the only case considered 
by Levy & Forsdyke (1928) in their early treatment of the stability of the helical 
filament. They obtained results which showed that the perturbation mode 
y = k' is stable for a pitch (tan a )  greater than 0.3 and unstable for a pitch below 
0.3. In  fact, this mode must always be stable since the po perturbation represents 
no deformation. However, owing to the difficulty associated with the proper 
treatment of the finite vortex core and the requirement for extensive numerical 
computation, it is not too surprising that these results were inaccurate. 
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4 n -  

FIGURE 4. Spatial amplification rate us. vortex core parameter for a vortex ring with an 
instability mode of n waves around the perimeter -, results assuming the core size a 
remains constant during the perturbation; - ---, the results and the envelope of the results 
assuming constant local volume for the vortex filament. 

The axial and rotational velocities of the unperturbed helix are of the form 

v, = ( r / 4 n ~ )  [ - v y o g  ./R - A )  + v,,] 
a,, = (r /47m) - $(log ./R - A )  + QJ, 

(54) 

and (55) 

where V’, = IC3R3c3 and 0, = - IC2R2C3 from (25), and V,, and 0, (obtained numeri- 
cally) are O(1) functions which depend only upon ICR. V,, and 0, are shown in 
figure 3 as a function of the pitch of the underformed helix (tan a = l/kR). These 
results agree with previous work on the motion of helical vortex filaments 
reported by Loukakis (1971) in a study of marine propeller wakes. 

Before presenting the stability results for the helical filament we present the 
related results for the vortex ring, taken from 11. For a vortex ring, the induced 
velocity V, divided by r/47~R is a very useful parameter for characterizing the 
properties of the finite core because it contains only the effects of core size and 
vorticity distribution. From the formula for the self-induced velocity V, of 
a vortex ring (e.g. from I) we find this parameter P to be 

P= v,/(r/4di) = log ( S R ~ U )  + A  - Q. 

Since y must be an integer for the vortex ring, the amplification rate a: is 
expressed as a function of Pfor the various modes, corresponding to y = n. In  11, 
results are presented for the spatial amplification rate, the growth rate a:z of the 

42 F L M  5 4  
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FIGURE 5 a  and 5 b .  For legend see opposite page. 
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FIGURE 5. Non-dimensional amplification rate for helices with various values of tana (the 
pitch) with an instability mode of y/k' waves per cycle. The values of the ratio of vortex 
core radius to cylinder radius are shown on each curve. (a) tana = 1; (b )  tana = 0.3; 
(c) tana = 0.2; (d )  tana = 0.1. 
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instability with distance (in radii) travelled by the ring, obtained by multiplying 
a with RP,. 

(56) a, = aR/%. 

Figure 4 shows CL, as a function of P . 
For each mode of deformation, with n waves around the perimeter, there is 

a range of F for which Ex is real and positive (instability). For large F (small core 
size), the unstable mode contains many wavelengths. This makes it more difficult 
to justify our application of perturbation techniques, since the core size should 
be small in comparison with both the radius and the wavelength of the instability. 
However, there is experimental evidence (Krutzsch 1939) that the vortex ring 
of small core size does exhibit an instability with many waves around the 
perimeter, so that this result is at least qualitatively correct. 

One suspects that the short-wave instability is a local property of a curved 
vortex filament and is not restricted to the ring since for very short waves only 
the influence of neighbouring portions of the filament would be important. (It is, 
however, necessary to go to O(1) in calculating the induced velocities since the 
O( -log a) terms do not indicate instability.) Since y may take any value on the 
helical filament, we would expect for a given core size to find a range of y for 
which a short-wave instability exists. Of course, since the helix is more complex 
and neighbouring filaments interact, other longer wave instabilities are also 
possible. In  the limit of very small core size, (31) shows that wavenumbers 
smaller than the local curvature are unstable. These waves cannot exist on the 
ring but are allowed on the helix. 

Numerical calculations were performed for helix pitches, tana,  of 1.0,0.4,0-3, 
0-2, 0.13 and 0.1. The results of the stability calculations, the non-dimensional 
amplification rates as a function of wavenumber, are shown in figure 5 for 
helices of various pitch and various vortex core radii. The vorticity in the core 
has been taken as uniform, so that A = $. The parameter ylk', the number of 
waves per cycle of the helix, is used to characterize the perturbation mode. 
Although the core size is assumed to be small, here we have presented results for 
a ranging from 0.01 to 0.33 to indicate the general trends. 

The most interesting result of the stability calculations is that there are three 
distinct types of instability of the helical vortex filament. On considering the 
general features of figures 5 (a)-(d) we see the following: 

(i) There exists a very short-wave instability mode, analogous to the short- 
wave instability of the vortex ring. For this mode the local radius of curvature 
of the helix R is the characteristic length, so that in comparing the details to the 
ring solution one should use aR/R as a measure of vortex core size, (y/k') (L%'/R) 
as a measure of effective 'n ' ,  and E(9Z'/R)2 as a measure of the amplification rate. 

(ii) For ylk' < kR, a low wavenumber instability exists. This is also the neutral 
stability boundary (from (31)) obtained if the local-induction model is used to 
calculate the induced velocities. Although the general characteristics of the 
instability are as predicted by (3 l), namely increasing amplification rate with 
decreasing core size with the most unstable wave occurring at  about 

- 

ylk' = kRC@, 
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FIGURE 6 .  Instability mode shapes ; the short-wave instability, the mutual-inductance 
modes with ylk' = + and $ and the long-wave instability with ylk' = 8. The last three 
curves were plotted from numerical computations. The dark portions are outside the 
cylinder on the near side; the light portions are inside. 

the O( 1) terms are very important in determining the magnitude of 5, typically 
yielding values greater by factors of 3 or 4 than those given by (31). 

(iii) For values of helical pitch such that successive turns pass within a distance 
of one radius (say tana  < 0.3), a third instability appears owing to mutual 
inductance between the turns. This is analogous to the vortex pair instability 
but differs in that the circulation of 'each filament' is the same. Referring to 
figure 5 ( b ) ,  for which tana  = 0.3, we see a weak instability a t  y/k' = $ for 
a/R = 0.33. In  figure 5 (c ) ,  for which tan a = 0.2, this instability is much more 
prominent and occurs at both y/k' = # and g. The significance of these wave- 
numbers is that the perturbation is 180' out of phase on successive turns and the 
mode shape is similar to the vortex-pair instability. In  this mutual-induction 
instability mode, decreasing vortex core size leads to decreasing amplification 
rate. 

The mode shape can be obtained from (51). Since Qa is equal to Qpp,  

- 
CL = - iQa+ZR 

and therefore 60 = - (QIpIZR) PO, 
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FIGURE 7. Stability boundaries for helical vortex filaments of finite core. The value of the 
ratio of core-to-cylinder radius are shown on each curve. Above the boundary, the helical 
filament of that core size is unstable. 

where Tj i ,  is the real part of ?i. A sketch of typical mode shapes for the various 
instabilities, given in figure 6, shows the short-wave instability, the mutual- 
inductance modes, with y/k' = % and Q and the long-wave instability, with 
y/k' = 4. With the mutual-inductance instability the neighbouring filaments 
attempt to roll up around one another as do the vortices in a pair of the same sign 
or in the vortex sheet from a wing. 

The stability boundaries for several vortex core radii appear in figure 7. For 
each value of the vortex core radius, the neutral stability curve is shown, i.e. y/k' 
as a function of kR for which the amplification rate Tji is zero. To the right of this 
curve iji is real and positive; the filament is unstable. For y/k' < 1, the local- 
induction model gives the neutral curve for a vortex core radius a of zero; 
y/k' = kR/( 1 + k2R2)6. For all practical purposes, this is also the neutral curve 
for a > 0. 

The general trends of the stability boundary for a given core size are as follows: 
for kR below some critical value two instability modes are present, the short-wave 
mode and the local-induction instability; with increasing kR (decreasing pitch), 
the mutual-inductance modes become unstable; with further increases in kR the 
mutual-inductance modes merge and the helix is unstable for almost all wave- 
lengths. It is always stable for ylk' 2 1 and there is an upper boundary for the 
short-wave instability for any given vortex core size. 

In  the limit kR+m the helix becomes a jet, which is unstable for all wave- 
numbers, but this limit must be carefully taken so that I? becomes a differential 
quantity as IcR 3 00. Also, the interpretation of the single filament and finite core 
would have to be carefully considered. This will not be done. 
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6. Conclusions 
We have demonstrated that the helical vortex filament of finite core size is 

unstable to small sinusoidal displacements of the filament, especially as the pitch 
becomes small and neighbouring filaments can strongly interact. The analysis 
considers the effect of the entire perturbed vortex filament on the self-induced 
motion of each element. The formulation is general and can be used for any 
distribution of vorticity within the core. Since the solution for self-induced 
motion of the vortex filament from I includes the effects of axial velocity within 
the core, this could also be considered in the analysis. 

However, to test these results experimentally requires some additional con- 
siderations. A single helical filament is a difficult flow to create. A propeller or 
helicopter wake has one helical filament trailing from each blade. In  addition, 
since the lift drops to zero at the hub, there is probably vorticity of opposite sign 
shed along the blade, inboard from the tip. Also, since a propeller can create 
no net circulation downstream there must at least be a hub vortex equal in 
strength to all of the filaments. The effect of these vortex filaments on the stability 
of the total configuration would have to be examined in each case. It is likely, 
though, that in spite of these complications instabilities will be observed in these 
situations. 

If desired, a single helical filament could be created, for example, by rotating 
a long cylindrical tube containing a mean flow with a wing section mounted on 
one wall extending along a radius but ending before the centre-line. 

This work was supported by Air Force Office of Scientific Research (OSR) 
under contract P44620-69-c-0090. 
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